Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
(i) 41,−1
(ii) 2,31
(iii) 0,5
(iv) 1,1
(v) −41,41
(vi) 4,1
Answer 2:
(i) 41,−1
Let the polynomial be ax2+bx+c and its zeroes be α and β.
<br><br><br><br>α+β=41=a−bαβ=−1=4−4=ac If a=4, then b=−1,c=−4<br><br>
Therefore, the quadratic polynomial is 4x2−x−4.
(ii) 2,31
Let the polynomial be ax2+bx+c and its zeroes be α and β.
<br><br><br><br>α+β=2=332=a−bαβ=31=ac If a=3, then b=−32,c=1<br><br>
Therefore, the quadratic polynomial is 3x2−32x+1.
(iii) 0,5
Let the polynomial be ax2+bx+c and its zeroes be α and β.
<br><br><br>α+β=0=10=a−bα×β=5=15=ac<br><br>
If a=1, then b=0,c=5
Therefore, the quadratic polynomial is x2+5.
(iv) 1,1
Let the polynomial be ax2+bx+c and its zeroes be α and β.
<br><br><br><br>α+β=1=11=a−bα×β=1=11=ac If a=1, then b=−1,c=1<br><br>
Therefore, the quadratic polynomial is x2−x+1.
(v) −41,41
Let the polynomial be ax2+bx+c and its zeroes be α and β.
<br><br><br><br>α+β=4−1=a−bα×β=41=ac If a=4, then b=1,c=1<br><br>
Therefore, the quadratic polynomial is 4x2+x+1.
(vi) 4,1
Let the polynomial be ax2+bx+c and its zeroes be α and β.
<br><br><br><br>α+β=4=14=a−bα×β=1=11=ac If a=1, then b=−4,c=1<br><br>
Therefore, the quadratic polynomial is x2−4x+1.
\section*{Mathematics}
(Chapter - 2) (Polynomials)
(Class - X)
\section*{Exercise 2.3}