Show that the function given by f(x)=3x+17f(x)=3 x+17f(x)=3x+17 is strictly increasing on R\mathbf{R}R.
Show that the function given by f(x)=e2xf(x)=e^{2 x}f(x)=e2x is strictly increasing on R\mathbf{R}R.
Show that the function given by f(x)=sinxf(x)=\sin xf(x)=sinx is
(a) Strictly increasing in (0,π2)\left(0, \frac{\pi}{2}\right)(0,2π)
(b) Strictly decreasing in (π2,π)\left(\frac{\pi}{2}, \pi\right)(2π,π)
(c) Neither increasing nor decreasing in (0,π)(0, \pi)(0,π)
Find the intervals in which the function fff given by f(x)=2x2−3xf(x)=2 x^{2}-3 xf(x)=2x2−3x is
(a) Strictly increasing
(b) Strictly decreasing
Find the intervals in which the function fff given f(x)=2x3−3x2−36x+7f(x)=2 x^{3}-3 x^{2}-36 x+7f(x)=2x3−3x2−36x+7 is
Find the intervals in which the following functions are strictly increasing or decreasing.
(a) x2+2x−5x^{2}+2 x-5x2+2x−5
(b) 10−6x−2x210-6 x-2 x^{2}10−6x−2x2
(c) −2x3−9x2−12x+1-2 x^{3}-9 x^{2}-12 x+1−2x3−9x2−12x+1
(d) 6−9x−9x26-9 x-9 x^{2}6−9x−9x2
(e) (x+1)3(x−3)3(x+1)^{3}(x-3)^{3}(x+1)3(x−3)3
Show that y=log(1+x)−2x2+x,x>−1y=\log (1+x)-\frac{2 x}{2+x}, x>-1y=log(1+x)−2+x2x,x>−1, is an increasing function of xxx throughout its domain.
Find the values of xxx for which y=[x(x−2)]2y=[x(x-2)]^{2}y=[x(x−2)]2 is an increasing function.
Prove that y=4sinθ(2+cosθ)−θy=\frac{4 \sin \theta}{(2+\cos \theta)}-\thetay=(2+cosθ)4sinθ−θ is an increment function of θ\thetaθ in [0,π2]\left[0, \frac{\pi}{2}\right][0,2π].
Prove that the logarithmic function is strictly increasing on (0,∞)(0, \infty)(0,∞).
Prove that the function fff given by f(x)=x2−x+1f(x)=x^{2}-x+1f(x)=x2−x+1 is neither strictly increasing nor strictly decreasing on (−1,1)(-1,1)(−1,1).
Which of the following principles are strictly decreasing on (0,π2)\left(0, \frac{\pi}{2}\right)(0,2π) ?
(A) cosx\cos xcosx
(B) cos2x\cos 2 xcos2x
(C) cos3x\cos 3 xcos3x
(D) tanx\tan xtanx
On which of the following intervals is the function fff is given by f(x)=x100+sinx−1f(x)=x^{100}+\sin x-1f(x)=x100+sinx−1 is strictly decreasing?
(A) (0,1)(0,1)(0,1)
(B) (π2,π)\left(\frac{\pi}{2}, \pi\right)(2π,π)
(C) (0,π2)\left(0, \frac{\pi}{2}\right)(0,2π)
(D) None of these
For what values of aaa the function fff given f(x)=x2+ax+1f(x)=x^{2}+a x+1f(x)=x2+ax+1 is increasing on [1,2][1,2][1,2] ?
Let I\mathbf{I}I be any interval disjoint from [−1,1][-1,1][−1,1]. Prove that the function fff given by f(x)=x+1xf(x)=x+\frac{1}{x}f(x)=x+x1 is increasing on I\mathbf{I}I.
Prove that the function fff given by f(x)=logsinxf(x)=\log \sin xf(x)=logsinx is increasing on (0,π2)\left(0, \frac{\pi}{2}\right)(0,2π) and decreasing on (π2,π)\left(\frac{\pi}{2}, \pi\right)(2π,π).
Prove that the function fff given by f(x)=log∣cosx∣f(x)=\log |\cos x|f(x)=log∣cosx∣ is decreasing on (0,π2)\left(0, \frac{\pi}{2}\right)(0,2π) and increasing on (3π2,2π)\left(\frac{3 \pi}{2}, 2 \pi\right)(23π,2π).
Prove that the function given by f(x)=x3−3x2+3x−100f(x)=x^{3}-3 x^{2}+3 x-100f(x)=x3−3x2+3x−100 is increasing in R\mathbf{R}R.
The interval in which y=x2e−xy=x^{2} e^{-x}y=x2e−x is increasing is
(A) (−∞,∞)(-\infty, \infty)(−∞,∞)
(B) (−2,0)(-2,0)(−2,0)
(C) (2,∞)(2, \infty)(2,∞)
(D) (0,2)(0,2)(0,2)