Differentiate with respect to xxx the function (3x2−9x+5)9\left(3 x^{2}-9 x+5\right)^{9}(3x2−9x+5)9.
Differentiate with respect to xxx the function sin3x+cos6x\sin ^{3} x+\cos ^{6} xsin3x+cos6x.
Verify Rolle's Theorem for the function f(x)=x2+2x−8,x∈[−4,2]f(x)=x^{2}+2 x-8, x \in[-4,2]f(x)=x2+2x−8,x∈[−4,2]
Examine if Rolle's Theorem is applicable to any of the following functions. Can you say something about the converse of Rolle's Theorem from these examples?
(i)
(ii) f(x)=[x]\quad f(x)=[x]f(x)=[x] for x∈[−2,2]x \in[-2,2]x∈[−2,2]
(iii) f(x)=x2−1\quad f(x)=x^{2}-1f(x)=x2−1 for x∈[1,2]x \in[1,2]x∈[1,2]
If f:[−5,5]→Rf:[-5,5] \rightarrow \mathbf{R}f:[−5,5]→R is a differentiable function and if f′(x)f^{\prime}(x)f′(x) does not vanish anywhere, then prove that f(−5)≠f(5)f(-5) \neq f(5)f(−5)=f(5).
Verify Mean Value Theorem, if f(x)=x2−4x−3f(x)=x^{2}-4 x-3f(x)=x2−4x−3 in the integral [a,b][a, b][a,b], where a=1a=1a=1 and b=4b=4b=4.
Verify Mean Value Theorem, if f(x)=x3−5x2−3xf(x)=x^{3}-5 x^{2}-3 xf(x)=x3−5x2−3x in the interval [a,b][a, b][a,b] where a=1a=1a=1 and b=3b=3b=3. Find all c∈(1,3)c \in(1,3)c∈(1,3) for which f′(c)=0f^{\prime}(c)=0f′(c)=0.
Examine the applicability of Mean Value Theorem for all three functions given
(i) f(x)=[x]\quad f(x)=[x]f(x)=[x] for x∈[5,9]x \in[5,9]x∈[5,9]
Differentiate with respect to xxx the function (5x)3cos2x(5 x)^{3 \cos 2 x}(5x)3cos2x.
Differentiate with respect to xxx the function sin−1(xx),0≤x≤1\sin ^{-1}(x \sqrt{x}), 0 \leq x \leq 1sin−1(xx),0≤x≤1.
Differentiate with respect to xxx the function cos−1x22x+7,−2<x<2\frac{\cos ^{-1} \frac{x}{2}}{\sqrt{2 x+7}},-2<x<22x+7cos−12x,−2<x<2.
Solution:
Let y=cos−1x22x+7y=\frac{\cos ^{-1} \frac{x}{2}}{\sqrt{2 x+7}}y=2x+7cos−12x
Using quotient rule, we get
Differentiate with respect to xxx the function cot−1[1+sinx+1−sinx1+sinx−1−sinx],0<x<π2\cot ^{-1}\left[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right], 0<x<\frac{\pi}{2}cot−1[1+sinx−1−sinx1+sinx+1−sinx],0<x<2π.
Differentiate with respect to xxx the function (logx)logx,x>1(\log x)^{\log x}, x>1(logx)logx,x>1.
Differentiate with respect to xxx the function cos(acosx+bsinx)\cos (a \cos x+b \sin x)cos(acosx+bsinx), for some constant aaa and bbb.
Differentiate with respect to xxx the function (sinx−cosx)(sinx−cosx),π4<x<3π4(\sin x-\cos x)^{(\sin x-\cos x)}, \frac{\pi}{4}<x<\frac{3 \pi}{4}(sinx−cosx)(sinx−cosx),4π<x<43π
If y=∣f(x)g(x)h(x)lmnabc∣\quad y=\left|\begin{array}{ccc}f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c\end{array}\right|y=f(x)lag(x)mbh(x)nc, prove that dydx=∣f′(x)g′(x)h′(x)lmnabc∣\frac{d y}{d x}=\left|\begin{array}{ccc}f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\ l & m & n \\ a & b & c\end{array}\right|dxdy=f′(x)lag′(x)mbh′(x)nc
Differentiate with respect to xxx the function xx+xa+ax+aax^{x}+x^{a}+a^{x}+a^{a}xx+xa+ax+aa, for some fixed a>0a>0a>0 and x>0x>0x>0.
Differentiate with respect to xxx the function xx2−3+(x−3)x2x^{x^{2}-3}+(x-3)^{x^{2}}xx2−3+(x−3)x2, for x>3x>3x>3.
Find dydx\frac{d y}{d x}dxdy, if y=12(1−cost),x=10(t−sint),−π2<t<π2y=12(1-\cos t), x=10(t-\sin t), \frac{-\pi}{2}<t<\frac{\pi}{2}y=12(1−cost),x=10(t−sint),2−π<t<2π
Find dydx\frac{d y}{d x}dxdy, if y=sin−1x+sin−11−x2,−1≤x≤1y=\sin ^{-1} x+\sin ^{-1} \sqrt{1-x^{2}},-1 \leq x \leq 1y=sin−1x+sin−11−x2,−1≤x≤1.
If x1+y+y1+x=0x \sqrt{1+y}+y \sqrt{1+x}=0x1+y+y1+x=0 for −1<x<1-1<x<1−1<x<1, prove that dydx=−1(1+x)2\frac{d y}{d x}=-\frac{1}{(1+x)^{2}}dxdy=−(1+x)21.
If y=eacos−1x,−1≤x≤1y=e^{a \cos ^{-1} x},-1 \leq x \leq 1y=eacos−1x,−1≤x≤1, show that (1−x2)d2ydx2−xdydx−a2y=0\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-a^{2} y=0(1−x2)dx2d2y−xdxdy−a2y=0
If (x−a)2+(y−b)2=c2(x-a)^{2}+(y-b)^{2}=c^{2}(x−a)2+(y−b)2=c2 for c>0c>0c>0, prove that
is a constant independent of aaa and bbb.
If cosy=xcos(a+y)\cos y=x \cos (a+y)cosy=xcos(a+y) with cosa≠±1\cos a \neq \pm 1cosa=±1, prove that dydx=cos2(a+y)sina\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\sin a}dxdy=sinacos2(a+y).
If x=a(cost+tsint)x=a(\cos t+t \sin t)x=a(cost+tsint) and y=a(sint−tcost)y=a(\sin t-t \cos t)y=a(sint−tcost), find d2ydx2\frac{d^{2} y}{d x^{2}}dx2d2y.
If f(x)=∣x∣3f(x)=|x|^{3}f(x)=∣x∣3, show that f′′(x)f^{\prime \prime}(x)f′′(x) exists for all real xxx, and find it.
Using mathematical induction prove that ddx(xn)=nxn−1\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}dxd(xn)=nxn−1 for all positive integers nnn.
Using the fact that sin(A+B)=sinAcosB+cosAsinB\sin (A+B)=\sin A \cos B+\cos A \sin Bsin(A+B)=sinAcosB+cosAsinB and the differentiation, obtain the sum formula for cosines.
Does there exist a function which is continuous everywhere but not differentiable at exactly two points? Justify your answer?