If xxx and yyy are connected parametrically by the equations x=sin3tcos2t,y=cos3tcos2tx=\frac{\sin ^{3} t}{\sqrt{\cos 2 t}}, y=\frac{\cos ^{3} t}{\sqrt{\cos 2 t}}x=cos2tsin3t,y=cos2tcos3t, without eliminating the parameter, find dydx\frac{d y}{d x}dxdy
If xxx and yyy are connected parametrically by the equations x=asecθ,y=btanθx=a \sec \theta, y=b \tan \thetax=asecθ,y=btanθ, without eliminating the parameter, find dydx\frac{d y}{d x}dxdy
If xxx and yyy are connected parametrically by the equations x=a(cost+logtant2),y=asintx=a\left(\cos t+\log \tan \frac{t}{2}\right), y=a \sin tx=a(cost+logtan2t),y=asint, without eliminating the parameter, find dydx\frac{d y}{d x}dxdy
If xxx and yyy are connected parametrically by the equations x=2at2,y=at4x=2 a t^{2}, y=a t^{4}x=2at2,y=at4, without eliminating the parameter, find dydx\frac{d y}{d x}dxdy
If xxx and yyy are connected parametrically by the equations x=acosθ,y=bcosθx=a \cos \theta, y=b \cos \thetax=acosθ,y=bcosθ, without eliminating the parameter, find dydx\frac{d y}{d x}dxdy
If xxx and yyy are connected parametrically by the equations x=sint,y=cos2tx=\sin t, y=\cos 2 tx=sint,y=cos2t, without eliminating the parameter, find dydx\frac{d y}{d x}dxdy
If xxx and yyy are connected parametrically by the equations x=4t,y=4tx=4 t, y=\frac{4}{t}x=4t,y=t4, without eliminating the parameter, find dydx\frac{d y}{d x}dxdy
If xxx and yyy are connected parametrically by the equations x=cosθ−cos2θ,y=sinθ−sin2θx=\cos \theta-\cos 2 \theta, y=\sin \theta-\sin 2 \thetax=cosθ−cos2θ,y=sinθ−sin2θ, without eliminating the parameter, find dydx\frac{d y}{d x}dxdy
If xxx and yyy are connected parametrically by the equations x=a(θ−sinθ),y=a(1+cosθ)x=a(\theta-\sin \theta), y=a(1+\cos \theta)x=a(θ−sinθ),y=a(1+cosθ), without eliminating the parameter, find dydx\frac{d y}{d x}dxdy
If x=asin−1t,y=acos−1tx=\sqrt{a^{\sin ^{-1} t}}, y=\sqrt{a^{\cos ^{-1} t}}x=asin−1t,y=acos−1t, show that dydx=−yx\frac{d y}{d x}=-\frac{y}{x}dxdy=−xy