Differentiate the function with respect to x:cosx⋅cos2x⋅cos3xx: \cos x \cdot \cos 2 x \cdot \cos 3 xx:cosx⋅cos2x⋅cos3x
Differentiate the function with respect to x:(x−1)(x−2)(x−3)(x−4)(x−5)x: \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}x:(x−3)(x−4)(x−5)(x−1)(x−2)
Differentiate the function with respect to x:(logx)cosxx:(\log x)^{\cos x}x:(logx)cosx
Differentiate the function with respect to x:xx−2sinxx: x^{x}-2^{\sin x}x:xx−2sinx
Differentiate the function with respect to x:(x+3)2⋅(x+4)3⋅(x+5)4x:(x+3)^{2} \cdot(x+4)^{3} \cdot(x+5)^{4}x:(x+3)2⋅(x+4)3⋅(x+5)4
Differentiate the function with respect to x:(x+1x)x+x(1+1x)x:\left(x+\frac{1}{x}\right)^{x}+x^{\left(1+\frac{1}{x}\right)}x:(x+x1)x+x(1+x1)
Differentiate the function with respect to x:(logx)x+xlogxx:(\log x)^{x}+x^{\log x}x:(logx)x+xlogx
Differentiate the function with respect to x:(sinx)x+sin−1xx:(\sin x)^{x}+\sin ^{-1} \sqrt{x}x:(sinx)x+sin−1x
Differentiate the function with respect to x:xsinx+(sinx)cosxx: x^{\sin x}+(\sin x)^{\cos x}x:xsinx+(sinx)cosx
Differentiate the function with respect to x:xxcosx+x2+1x2−1x:^{x^{x \cos x}+\frac{x^{2}+1}{x^{2}-1}}x:xxcosx+x2−1x2+1
Differentiate the function with respect to x:(xcosx)x+(xsinx)1xx:(x \cos x)^{x}+(x \sin x)^{\frac{1}{x}}x:(xcosx)x+(xsinx)x1
Find dydx\frac{d y}{d x}dxdy of the function xy+yx=1x^{y}+y^{x}=1xy+yx=1
Find dydx\frac{d y}{d x}dxdy of the function yx=xyy^{x}=x^{y}yx=xy
Find dydx\frac{d y}{d x}dxdy of the function (cosx)y=(cosy)x(\cos x)^{y}=(\cos y)^{x}(cosx)y=(cosy)x
Find dydx\frac{d y}{d x}dxdy of the function xy=e(x−y)x y=e^{(x-y)}xy=e(x−y)
Find the derivative of the function given by f(x)=(1+x)(1+x2)(1+x4)(1+x8)f(x)=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)f(x)=(1+x)(1+x2)(1+x4)(1+x8) and hence find f′(1)f^{\prime}(1)f′(1).
Differentiate (x2−5x+8)(x3+7x+9)\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right)(x2−5x+8)(x3+7x+9) in three ways mentioned below.
(i) By using product rule
(ii) By expanding the product to obtain a single polynomial.
(iii) By logarithmic differentiation.
Do they all give the same answer?
If u,vu, vu,v and www are functions of xxx, then show that
ddx(u.v.w)=dudxv.w+u.dvdx.w+u.v.dwdx\frac{d}{d x}(u . v . w)=\frac{d u}{d x} v . w+u . \frac{d v}{d x} . w+u . v . \frac{d w}{d x}dxd(u.v.w)=dxduv.w+u.dxdv.w+u.v.dxdw
in two ways - first by repeated application of product rule, second by logarithmic differentiation.