Find dxdy:y=cos−1(1+x21−x2),0<x<1
Solution:
Given, y=cos−1(1+x21−x2)
⇒cosy=(1+x21−x2)
⇒1+tan22y1−tan22y=1+x21−x2
Comparing LHS and RHS, we get
tan2y=x
Differentiating with respect to x, we get
sec22y⋅dxd(2y)=dxd(x)
⇒sec22y×21dxdy=1
⇒dxdy=sec22y2
⇒dxdy=1+tan22y2
∴dxdy=1+x22