Prove that the function f(x)=5x−3f(x)=5 x-3f(x)=5x−3 is continuous at x=0,x=−3x=0, x=-3x=0,x=−3 and at x=5x=5x=5.
Examine the continuity of the function f(x)=2x2−1f(x)=2 x^{2}-1f(x)=2x2−1 at x=3x=3x=3.
Examine the following functions for continuity.
(i)
(ii) f(x)=1x−5,x≠5f(x)=\frac{1}{x-5}, x \neq 5f(x)=x−51,x=5
(iii) f(x)=x2−25x+5,x≠−5f(x)=\frac{x^{2}-25}{x+5}, x \neq-5f(x)=x+5x2−25,x=−5
(iv) f(x)=∣x−5∣,x≠5f(x)=|x-5|, x \neq 5f(x)=∣x−5∣,x=5
Prove that the function f(x)=xnf(x)=x^{n}f(x)=xn is continuous at x=nx=nx=n, where nnn is a positive integer.
Is the function fff defined by f(x)={x, if x≤15, if x>1f(x)=\left\{\begin{array}{l}x, \text { if } x \leq 1 \\ 5, \text { if } x>1\end{array}\right.f(x)={x, if x≤15, if x>1 continuous at x=0x=0x=0 ? At x=1x=1x=1 ? At x=2x=2x=2 ?
Find all points of discontinuity of fff, where fff is defined by f(x)={2x+3, if x≤22x−3, if x>2.f(x)=\left\{\begin{array}{l}2 x+3, \text { if } x \leq 2 \\ 2 x-3, \text { if } x>2 .\end{array}\right.f(x)={2x+3, if x≤22x−3, if x>2.
Find all points of discontinuity of fff, where fff is defined by
Find all points of discontinuity of fff, where fff is defined by f(x)={∣x∣x, if x≠00, if x=0f(x)=\left\{\begin{array}{l}\frac{|x|}{x} \text {, if } x \neq 0 \\ 0 \text {, if } x=0\end{array}\right.f(x)={x∣x∣, if x=00, if x=0
Find all points of discontinuity of fff, where fff is defined by {f(x)={x∣x∣, if x<0−1, if x≥0.\left\{f(x)=\left\{\begin{array}{l}\frac{x}{|x|}, \text { if } x<0 \\ -1, \text { if } x \geq 0 .\end{array}\right.\right.{f(x)={∣x∣x, if x<0−1, if x≥0.
Find all points of discontinuity of fff, where fff is defined by f(x)={x+1, if x≥1x2+1, if x<1f(x)=\left\{\begin{array}{l}x+1, \text { if } x \geq 1 \\ x^{2}+1, \text { if } x<1\end{array}\right.f(x)={x+1, if x≥1x2+1, if x<1
Find all points of discontinuity of fff, where fff is defined by f(x)={x3−3, if x≤2x2+1, if x>2f(x)=\left\{\begin{array}{l}x^{3}-3, \text { if } x \leq 2 \\ x^{2}+1, \text { if } x>2\end{array}\right.f(x)={x3−3, if x≤2x2+1, if x>2
For what value of λ\lambdaλ is the function defined by f(x)={λ(x2−2x), if x≤04x+1, if x>0 is continous at x=0f(x)=\left\{\begin{array}{l}\lambda\left(x^{2}-2 x\right), \text { if } x \leq 0 \\ 4 x+1, \text { if } x>0 \quad \text { is continous at }\end{array}\right. x=0f(x)={λ(x2−2x), if x≤04x+1, if x>0 is continous at x=0 ? What about continuity at x=1x=1x=1 ?
Find all points of discontinuity of fff, where fff is defined by f(x)={x10−1, if x≤1x2, if x>1f(x)=\left\{\begin{array}{l}x^{10}-1, \text { if } x \leq 1 \\ x^{2}, \text { if } x>1\end{array}\right.f(x)={x10−1, if x≤1x2, if x>1.
Is the function defined by f(x)={x+5, if x≤1x−5, if x>1 a continous function? f(x)=\left\{\begin{array}{l}x+5, \text { if } x \leq 1 \\ x-5, \text { if } x>1 \text { a continous function? }\end{array}\right.f(x)={x+5, if x≤1x−5, if x>1 a continous function?
Discuss the continuity of the function fff, where fff is defined by f(x)={3, if 0≤x≤14, if 1<x<35, if 3≤x≤10f(x)=\left\{\begin{array}{l}3, \text { if } 0 \leq x \leq 1 \\ 4, \text { if } 1<x<3 \\ 5, \text { if } 3 \leq x \leq 10\end{array}\right.f(x)=⎩⎨⎧3, if 0≤x≤14, if 1<x<35, if 3≤x≤10
Discuss the continuity of the function fff, where fff is defined by f(x)={2x, if x<00, if 0≤x≤14x, if x>1f(x)=\left\{\begin{array}{l}2 x, \text { if } x<0 \\ 0, \text { if } 0 \leq x \leq 1 \\ 4 x, \text { if } x>1\end{array}\right.f(x)=⎩⎨⎧2x, if x<00, if 0≤x≤14x, if x>1
Discuss the continuity of the function fff, where fff is defined by f(x)={−2, if x≤−12x, if −1<x≤12, if x>1f(x)=\left\{\begin{array}{l}-2, \text { if } x \leq-1 \\ 2 x, \text { if }-1<x \leq 1 \\ 2, \text { if } x>1\end{array}\right.f(x)=⎩⎨⎧−2, if x≤−12x, if −1<x≤12, if x>1
Find the relationship between aaa and bbb so that the function fff defined by f(x)={ax+1, if x≤3bx+3, if x>3f(x)= \begin{cases}a x+1, & \text { if } x \leq 3 \\ b x+3, & \text { if } x>3\end{cases}f(x)={ax+1,bx+3, if x≤3 if x>3 is continous at x=3x=3x=3.
Show that the function defined by g(x)=x−[x]g(x)=x-[x]g(x)=x−[x] is discontinuous at all integral point. Here [x][x][x] denotes the greatest integer less than or equal to xxx.
Is the function defined by f(x)=x2−sinx+5f(x)=x^{2}-\sin x+5f(x)=x2−sinx+5 continuous at x=πx=\pix=π ?
Discuss the continuity of the following functions.
(i) f(x)=sinx+cosxf(x)=\sin x+\cos xf(x)=sinx+cosx
(ii) f(x)=sinx−cosxf(x)=\sin x-\cos xf(x)=sinx−cosx
(iii) f(x)=sinx×cosxf(x)=\sin x \times \cos xf(x)=sinx×cosx
Discuss the continuity of the cosine, cosecant, secant, and cotangent functions.
Find the points of discontinuity of fff, where f(x)={sinxx, if x<0x+1, if x≥0\quad f(x)=\left\{\begin{array}{l}\frac{\sin x}{x}, \text { if } x<0 \\ x+1, \text { if } x \geq 0\end{array}\right.f(x)={xsinx, if x<0x+1, if x≥0
Determine if fff defined by f(x)={x2sin1x, if x≠00, if x=0 is a continuous function? f(x)=\left\{\begin{array}{l}x^{2} \sin \frac{1}{x}, \text { if } x \neq 0 \\ 0, \text { if } x=0 \quad \text { is a continuous function? }\end{array}\right.f(x)={x2sinx1, if x=00, if x=0 is a continuous function?
Examine the continuity of fff, where fff is defined by f(x)={sinx−cosx, if x≠0−1, if x=0f(x)=\left\{\begin{array}{l}\sin x-\cos x, \text { if } x \neq 0 \\ -1, \text { if } x=0\end{array}\right.f(x)={sinx−cosx, if x=0−1, if x=0
Find the values of kkk so that the function fff is continuous at the indicated point f(x)={kcosxπ−2x, if x≠π23, if x=π2 at x=π2f(x)=\left\{\begin{array}{l}\frac{k \cos x}{\pi-2 x}, \text { if } x \neq \frac{\pi}{2} \\ 3, \text { if } x=\frac{\pi}{2} \quad \text { at } \quad x=\frac{\pi}{2}\end{array}\right.f(x)={π−2xkcosx, if x=2π3, if x=2π at x=2π
Find the values of kkk so that the function fff is continuous at the indicated point. f(x)={kx2, if x≤23, if x>2f(x)=\left\{\begin{array}{l}k x^{2}, \text { if } x \leq 2 \\ 3, \text { if } x>2\end{array}\right.f(x)={kx2, if x≤23, if x>2 at x=2x=2x=2
Find the values of kkk so that the function fff is continuous at the indicated point f(x)={kx+1, if x≤πcosx, if x>π at x=πf(x)=\left\{\begin{array}{l}k x+1, \text { if } x \leq \pi \\ \cos x, \text { if } x>\pi \text { at } x=\pi\end{array}\right.f(x)={kx+1, if x≤πcosx, if x>π at x=π
Find the values of kkk so that the function fff is continuous at the indicated point f(x)={kx+1, if x≤53x−5, if x>5 at x=5.f(x)=\left\{\begin{array}{l}k x+1, \text { if } x \leq 5 \\ 3 x-5, \text { if } x>5 \text { at } x=5 .\end{array}\right.f(x)={kx+1, if x≤53x−5, if x>5 at x=5.
Find the values of a&ba \& ba&b such that the function defined by f(x)={5, if x≤2ax+b, if 2<x<1021, if x≥10, is a f(x)=\left\{\begin{array}{l}5, \text { if } x \leq 2 \\ a x+b, \text { if } 2<x<10 \\ 21, \text { if } x \geq 10, \text { is a }\end{array}\right.f(x)=⎩⎨⎧5, if x≤2ax+b, if 2<x<1021, if x≥10, is a continuous function.
Show that the function defined by f(x)=cos(x2)f(x)=\cos \left(x^{2}\right)f(x)=cos(x2) is a continuous function.
Show that the function defined by f(x)=∣cosx∣f(x)=|\cos x|f(x)=∣cosx∣ is a continuous function.
Show that the function defined by f(x)=∣sinx∣f(x)=|\sin x|f(x)=∣sinx∣ is a continuous function.
Find all the points of discontinuity of fff defined by f(x)=∣x∣−∣x+1∣f(x)=|x|-|x+1|f(x)=∣x∣−∣x+1∣.