Prove that the determinant ∣xsinθcosθ−sinθ−x1cosθ1x∣\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|x−sinθcosθsinθ−x1cosθ1x is independent of θ\thetaθ.
Without expanding the determinant, prove that ∣aa2bcbb2cacc2ab∣=∣1a2a31b2b31c2c3∣\left|\begin{array}{lll}a & a^{2} & b c \\ b & b^{2} & c a \\ c & c^{2} & a b\end{array}\right|=\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|abca2b2c2bccaab=111a2b2c2a3b3c3.
Evaluate ∣cosαcosβcosαsinβ−sinα−sinβcosβ0sinαcosβsinαsinβcosα∣\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|cosαcosβ−sinβsinαcosβcosαsinβcosβsinαsinβ−sinα0cosα.
If a,b,ca, b, ca,b,c are real numbers and Δ=∣b+cc+aa+bc+aa+bb+ca+bb+cc+a∣=0\Delta=\left|\begin{array}{lll}b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a\end{array}\right|=0Δ=b+cc+aa+bc+aa+bb+ca+bb+cc+a=0, show that either a+b+c=0a+b+c=0a+b+c=0 or a=b=ca=b=ca=b=c.
Solve the equations ∣x+axxxx+axxxx+a∣=0,a≠0\left|\begin{array}{ccc}x+a & x & x \\ x & x+a & x \\ x & x & x+a\end{array}\right|=0, a \neq 0x+axxxx+axxxx+a=0,a=0.
Prove that ∣a2bcac+c2a2+abb2acabb2+bcc2∣=4a2b2c2\left|\begin{array}{ccc}a^{2} & b c & a c+c^{2} \\ a^{2}+a b & b^{2} & a c \\ a b & b^{2}+b c & c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}a2a2+ababbcb2b2+bcac+c2acc2=4a2b2c2.
If A−1=∣3−11−156−55−22∣A^{-1}=\left|\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right|A−1=3−155−16−21−52 and B=∣12−2−1300−21∣B=\left|\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right|B=1−1023−2−201, find (AB)−1(A B)^{-1}(AB)−1.
Let A=(1−21−231115)A=\left(\begin{array}{ccc}1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5\end{array}\right)A=1−21−231115 verify that
(i) [adjA]−1=adj(A)−1[\operatorname{adj} A]^{-1}=\operatorname{adj}(A)^{-1}[adjA]−1=adj(A)−1
(ii) (A−1)−1=A\left(A^{-1}\right)^{-1}=A(A−1)−1=A
Evaluate ∣xyx+yyx+yxx+yxy∣\left|\begin{array}{ccc}x & y & x+y \\ y & x+y & x \\ x+y & x & y\end{array}\right|xyx+yyx+yxx+yxy.
Evaluate ∣1xy1x+yy1xx+y∣\left|\begin{array}{ccc}1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y\end{array}\right|111xx+yxyyx+y.
Using properties of determinants prove that:
Solve the system of the following equations:
2x+3y+10z=4\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4x2+y3+z10=4
4x−6y+5z=1\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1x4−y6+z5=1
6x+9y−20z=2\frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2x6+y9−z20=2
If a,b,ca, b, ca,b,c are in A.P, then the determinant ∣x+2x+3x+2ax+3x+4x+2bx+4x+5x+2c∣\left|\begin{array}{lll}x+2 & x+3 & x+2 a \\ x+3 & x+4 & x+2 b \\ x+4 & x+5 & x+2 c\end{array}\right|x+2x+3x+4x+3x+4x+5x+2ax+2bx+2c is
(A) 0
(B) 1
(C) xxx
(D) 2x2 x2x
If x,y,zx, y, zx,y,z are non-zero real numbers, then the inverse of matrix A=(x000y000z)A=\left(\begin{array}{ccc}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right)A=x000y000z is
(A) (x−1000y−1000z−1)\left(\begin{array}{ccc}x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1}\end{array}\right)x−1000y−1000z−1
(B) xyz(x−1000y−1000z−1)x y z\left(\begin{array}{ccc}x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1}\end{array}\right)xyzx−1000y−1000z−1
(C) 1xyz(x000y000z)\frac{1}{x y z}\left(\begin{array}{ccc}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right)xyz1x000y000z
(D) 1xyz(100010001)\frac{1}{x y z}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)xyz1100010001
Let A=(1sinθ1−sinθ1sinθ−1−sinθ1)A=\left(\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right)A=1−sinθ−1sinθ1−sinθ1sinθ1, where 0≤θ≤2π0 \leq \theta \leq 2 \pi0≤θ≤2π, then:
(A) Det(A)=0\operatorname{Det}(A)=0Det(A)=0
(B) Det(A)∈(2,∞)\operatorname{Det}(A) \in(2, \infty)Det(A)∈(2,∞)
(C) Det(A)∈(2,4)\operatorname{Det}(A) \in(2,4)Det(A)∈(2,4)
(D) Det(A)∈[2,4]\operatorname{Det}(A) \in[2,4]Det(A)∈[2,4]