Examine the consistency of the system of equations:
x+2y=2x+2 y=2x+2y=2
2x+3y=32 x+3 y=32x+3y=3
2x−y=52 x-y=52x−y=5
x+y=4x+y=4x+y=4
x+3y=5x+3 y=5x+3y=5
2x+6y=82 x+6 y=82x+6y=8
Solve system of linear equations, using matrix method.
5x+2y=45 x+2 y=45x+2y=4
7x+3y=57 x+3 y=57x+3y=5
2x−y=−22 x-y=-22x−y=−2
3x+4y=33 x+4 y=33x+4y=3
5x+2y=35 x+2 y=35x+2y=3
3x+2y=53 x+2 y=53x+2y=5
x−y+z=4x-y+z=4x−y+z=4
2x+y−3z=02 x+y-3 z=02x+y−3z=0
x+y+z=2x+y+z=2x+y+z=2
2x+3y+3z=52 x+3 y+3 z=52x+3y+3z=5
x−2y+z=−4x-2 y+z=-4x−2y+z=−4
3x−y−2z=33 x-y-2 z=33x−y−2z=3
x−y+2z=7x-y+2 z=7x−y+2z=7
3x+4y−5z=−53 x+4 y-5 z=-53x+4y−5z=−5
2x−y+3z=122 x-y+3 z=122x−y+3z=12
A=(2−3532−411−2)A=\left(\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right)A=231−3215−4−2, find A−1A^{-1}A−1. Using A−1A^{-1}A−1 solve the system of equations
2x−3y+5z=112 x-3 y+5 z=112x−3y+5z=11
3x+2y−4z=−53 x+2 y-4 z=-53x+2y−4z=−5
x+y−2z=−3x+y-2 z=-3x+y−2z=−3
The cost of 4 kg onion, 3 kg wheat and 2 kg rice is ₹ 60 . The cost of 2 kg onion, 4 kg wheat and 6 kg rice is ₹90₹ 90₹90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is ₹ 70 . Find cost of each item per kg by matrix method.