Find the adjoint of the matrix (1234)\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)(1324)
Find the adjoint of the matrix (1−12235−201)\left(\begin{array}{ccc}1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1\end{array}\right)12−2−130251
Verify A(adjA)=(adjA)A=∣A∣IA(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| IA(adjA)=(adjA)A=∣A∣I for (23−4−6)\left(\begin{array}{cc}2 & 3 \\ -4 & -6\end{array}\right)(2−43−6)
Verify A(adjA)=(adjA)A=∣A∣IA(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| IA(adjA)=(adjA)A=∣A∣I for (1−1230−2103)\left(\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right)131−1002−23
Find the inverse of each of the matrix (2−243)\left(\begin{array}{cc}2 & -2 \\ 4 & 3\end{array}\right)(24−23) (if it exists).
Find the inverse of each of the matrix (−15−32)\left(\begin{array}{ll}-1 & 5 \\ -3 & 2\end{array}\right)(−1−352) (if it exists)
Find the inverse of each of the matrix (123024005)\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5\end{array}\right)100220345 (if it exists)
Find the inverse of each of the matrix (10033052−1)\left(\begin{array}{ccc}1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1\end{array}\right)13503200−1 (if it exists)
Find the inverse of each of the matrix (2134−10−721)\left(\begin{array}{ccc}2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1\end{array}\right)24−71−12301 (if it exists)
Find the inverse of each of the matrix (1−1202−33−24)\left(\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right)103−12−22−34 (if it exists)
Find the inverse of each of the matrix (1000cosαsinα0sinα−cosα)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right)1000cosαsinα0sinα−cosα (if it exists)
Let A=(3725)A=\left(\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right)A=(3275) and B=(6879)B=\left(\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right)B=(6789). Verify that (AB)−1=B−1A−1(A B)^{-1}=B^{-1} A^{-1}(AB)−1=B−1A−1.
If A=(31−12)A=\left(\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right)A=(3−112), show that A2−5A+7I=0A^{2}-5 A+7 I=0A2−5A+7I=0. Hence find A−1A^{-1}A−1.
For the matrix A=(3211)A=\left(\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right)A=(3121), find the numbers aaa and bbb such that A2+aA+bI=0A^{2}+a A+b I=0A2+aA+bI=0.
For the matrix A=(11112−32−13)A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right)A=11212−11−33, show that A3−6A2+5A+11I=0A^{3}-6 A^{2}+5 A+11 I=0A3−6A2+5A+11I=0. Hence, find A−1A^{-1}A−1.
A=(2−11−12−11−12)A=\left(\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)A=2−11−12−11−12, verify that A3−6A2+9A−4I=0A^{3}-6 A^{2}+9 A-4 I=0A3−6A2+9A−4I=0. Hence, find A−1A^{-1}A−1.
Let AAA be a non-singular square matrix of order 3×33 \times 33×3. Then ∣adjA∣|\operatorname{adj} A|∣adjA∣ is equal to:
(A) ∣A∣|A|∣A∣
(B) ∣A∣2|A|^{2}∣A∣2
(C) ∣A∣3|A|^{3}∣A∣3
(D) 3∣A∣3|A|3∣A∣
If AAA is an invertible matrix of order 2 , the det(A−1)\operatorname{det}\left(A^{-1}\right)det(A−1) is equal to:
(A) det(A)\operatorname{det}(A)det(A)
(B) 1det(A)\frac{1}{\operatorname{det}(A)}det(A)1
(C) 1
(D) 0