Write Minors and Cofactors of the elements of following determinants:
(i) ∣2−403∣\left|\begin{array}{cc}2 & -4 \\ 0 & 3\end{array}\right|20−43
(ii) ∣acbd∣\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|abcd
(i) ∣100010001∣\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|100010001
(ii) ∣10435−1012∣\left|\begin{array}{ccc}1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2\end{array}\right|1300514−12
Using Cofactors of elements of second row, evaluate Δ=∣538201123∣\Delta=\left|\begin{array}{lll}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{array}\right|Δ=521302813
Using Cofactors of elements of third column, evaluate Δ=∣1xyz1yzx1zxy∣\Delta=\left|\begin{array}{ccc}1 & x & y z \\ 1 & y & z x \\ 1 & z & x y\end{array}\right|Δ=111xyzyzzxxy
Δ=∣a11a12a13a21a22a23a31a32a33∣\Delta=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|Δ=a11a21a31a12a22a32a13a23a33 and AijA_{i j}Aij is the cofactor of aija_{i j}aij, then the value of Δ\DeltaΔ is given by:
A. a11A31+a12A32+a13A33a_{11} A_{31}+a_{12} A_{32}+a_{13} A_{33}a11A31+a12A32+a13A33
B. a11A11+a12A21+a13A31a_{11} A_{11}+a_{12} A_{21}+a_{13} A_{31}a11A11+a12A21+a13A31
C. a21A11+a22A12+a23A13a_{21} A_{11}+a_{22} A_{12}+a_{23} A_{13}a21A11+a22A12+a23A13
D. a11A11+a21A21+a31A31a_{11} A_{11}+a_{21} A_{21}+a_{31} A_{31}a11A11+a21A21+a31A31