Find area of the triangle with vertices at the point given in each of the following:
(i) (1,0),(6,0),(4,3)(1,0),(6,0),(4,3)(1,0),(6,0),(4,3)
(ii) (2,7),(1,1),(10,8)(2,7),(1,1),(10,8)(2,7),(1,1),(10,8)
(iii) (−2,−3),(3,2),(−1,−8)(-2,-3),(3,2),(-1,-8)(−2,−3),(3,2),(−1,−8)
Show that the points A(a,b+c),B(b,c+a),C(c,a+b)A(a, b+c), B(b, c+a), C(c, a+b)A(a,b+c),B(b,c+a),C(c,a+b) are collinear.
Find values of kkk if area of triangle is 4 square units and vertices are:
(i) (k,0),(4,0),(0,2)(k, 0),(4,0),(0,2)(k,0),(4,0),(0,2)
(ii) (−2,0),(0,4),(0,k)(-2,0),(0,4),(0, k)(−2,0),(0,4),(0,k)
(i) Find equation of line joining (1,2)(1,2)(1,2) and (3,6)(3,6)(3,6) using determinants.
(ii) Find equation of line joining (3,1)(3,1)(3,1) and (9,3)(9,3)(9,3) using determinants.
If area of the triangle is 35 square units with vertices (2,−6),(5,4),(k,4)(2,-6),(5,4),(k, 4)(2,−6),(5,4),(k,4). Then kkk is
(A) 12
(B) -2
(C) −12,−2-12,-2−12,−2
(D) 12,−212,-212,−2