Using the property of determinants and without expanding, prove that:
∣xax+ayby+bzcz+c∣=0\left|\begin{array}{lll}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=0xyzabcx+ay+bz+c=0
∣0a−b−a0−cbc0∣=0\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=00−aba0c−b−c0=0
∣−a2abacba−b2bccacb−c2∣=4a2b2c2\left|\begin{array}{ccc}-a^{2} & a b & a c \\ b a & -b^{2} & b c \\ c a & c b & -c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}−a2bacaab−b2cbacbc−c2=4a2b2c2
By using properties of determinants show that:
(i) ∣1aa21bb21cc2∣=(a−b)(b−c)(c−a)\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)111abca2b2c2=(a−b)(b−c)(c−a)
(ii) ∣111abca3b3c3∣=(a−b)(b−c)(c−a)(a+b+c)\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)1aa31bb31cc3=(a−b)(b−c)(c−a)(a+b+c)
∣xx2yzyy2zxzz2xy∣=(x−y)(y−z)(z−x)(xy+yz+zx)\left|\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x)xyzx2y2z2yzzxxy=(x−y)(y−z)(z−x)(xy+yz+zx)
(i) ∣x+42x2x2xx+42x2x2xx+4∣=(5x+4)(4−x)2\quad\left|\begin{array}{ccc}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|=(5 x+4)(4-x)^{2}x+42x2x2xx+42x2x2xx+4=(5x+4)(4−x)2
(ii) ∣y+kyyyy+kyyyy+k∣=k2(3y+k)\left|\begin{array}{ccc}y+k & y & y \\ y & y+k & y \\ y & y & y+k\end{array}\right|=k^{2}(3 y+k)y+kyyyy+kyyyy+k=k2(3y+k)
(i) ∣a−b−c2a2a2bb−c−a2b2c2cc−a−b∣=(a+b+c)3\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}a−b−c2b2c2ab−c−a2c2a2bc−a−b=(a+b+c)3
(ii) ∣x+y+2zxyzy+z+2xyzxz+x+2y∣=2(x+y+z)3\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|=2(x+y+z)^{3}x+y+2zzzxy+z+2xxyyz+x+2y=2(x+y+z)3
∣1xx2x21xxx21∣=(1−x3)2\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=\left(1-x^{3}\right)^{2}1x2xx1x2x2x1=(1−x3)2
∣1+a2−b22ab−2b2ab1−a2+b22a2b−2a1−a2−b2∣=(1+a2+b2)3\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}1+a2−b22ab2b2ab1−a2+b2−2a−2b2a1−a2−b2=(1+a2+b2)3
Let AAA be a square matrix of order 3×33 \times 33×3, then ∣kA∣|k A|∣kA∣ is equal to:
(A) k∣A∣k|A|k∣A∣
(B) k2∣A∣k^{2}|A|k2∣A∣
(C) k3∣A∣k^{3}|A|k3∣A∣
(D) 3k∣A∣3^{k}|A|3k∣A∣
Which of the following is correct?
(A) Determinant is a square matrix.
(B) Determinant is a number associated to a matrix.
(C) Determinant is a number associated to a square matrix.
(D) None of the above.