Find the values of xxx, if
(i) ∣2451∣=∣2x46x∣\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|2541=2x64x
(ii) ∣2345∣=∣x32x5∣\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{cc}x & 3 \\ 2 x & 5\end{array}\right|2435=x2x35
If ∣x218x∣=∣62186∣\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|x182x=61826, the xxx is equal to
(A) 6
(B) ±6\pm 6±6
(C) -6
(D) 0
If A=(11−221−354−9)A=\left(\begin{array}{lll}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right)A=125114−2−3−9, find ∣A∣|A|∣A∣
Evaluate the determinant ∣24−5−1∣\left|\begin{array}{cc}2 & 4 \\ -5 & -1\end{array}\right|2−54−1
Evaluate the determinants:
(i) ∣cosθ−sinθsinθcosθ∣\left|\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|cosθsinθ−sinθcosθ
(ii) ∣x2−x+1x−1x+1x+1∣\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|x2−x+1x+1x−1x+1
If A=[1242]A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]A=[1422], then show that ∣2A∣=4∣A∣|2 A|=4|A|∣2A∣=4∣A∣
If A=(101012004)A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right)A=100010124, then show that ∣3A∣=27∣A∣|3 A|=27|A|∣3A∣=27∣A∣
Evaluate the determinants
(i) ∣3−1−200−13−50∣\left|\begin{array}{ccc}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|303−10−5−2−10
(ii) ∣3−4511−2231∣\left|\begin{array}{ccc}3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1\end{array}\right|312−4135−21
(iii) ∣012−10−3−230∣\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right|0−1−21032−30
(iv) ∣2−1−202−13−50∣\left|\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right|203−12−5−2−10