Using elementary transformation, Find the inverse of the matrix (1−123)\left(\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right)(12−13), if exists.
Using elementary transformation, Find the inverse of the matrix (2111)\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)(2111), if exists.
Solution:
Let A=(2111)A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)A=(2111)
We know that A=IAA=I AA=IA
Therefore,
Using elementary transformation, Find the inverse of the matrix (1327)\left(\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right)(1237), if exists.
Using elementary transformation, Find the inverse of the matrix (2357)\left(\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right)(2537), if exists.
Using elementary transformation, Find the inverse of the matrix (2174)\left(\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right)(2714), if exists.
Using elementary transformation, Find the inverse of the matrix (2513)\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)(2153), if exists.
Using elementary transformation, Find the inverse of the matrix (3152)\left(\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right)(3512), if exists.
Using elementary transformation, Find the inverse of the matrix (4534)\left(\begin{array}{ll}4 & 5 \\ 3 & 4\end{array}\right)(4354), if exists.
Using elementary transformation, Find the inverse of the matrix (31027)\left(\begin{array}{cc}3 & 10 \\ 2 & 7\end{array}\right)(32107), if exists.
Using elementary transformation, Find the inverse of the matrix (3−1−42)\left(\begin{array}{cc}3 & -1 \\ -4 & 2\end{array}\right)(3−4−12), if exists.
Using elementary transformation, Find the inverse of the matrix (2−61−2)\left(\begin{array}{ll}2 & -6 \\ 1 & -2\end{array}\right)(21−6−2), if exists.
Using elementary transformation, Find the inverse of the matrix (6−3−21)\left(\begin{array}{cc}6 & -3 \\ -2 & 1\end{array}\right)(6−2−31), if exists.
Using elementary transformation, Find the inverse of the matrix (2−3−12)\left(\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right)(2−1−32), if exists.
Using elementary transformation, Find the inverse of the matrix (2142)\left(\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right)(2412), if exists.
Using elementary transformation, Find the inverse of the matrix (2−332233−22)\left(\begin{array}{ccc}2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2\end{array}\right)223−32−2332, if exists.
Using elementary transformation, Find the inverse of the matrix (13−2−30−5250)\left(\begin{array}{ccc}1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0\end{array}\right)1−32305−2−50, if exists.
Using elementary transformation, Find the inverse of the matrix (20−1510013)\left(\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right)250011−103, if exists.
Matrices AAA and BBB will be the inverse of each other only if:
(A) AB=BAA B=B AAB=BA
(B) AB=BA=0A B=B A=0AB=BA=0
(C) AB=0,BA=IA B=0, B A=IAB=0,BA=I
(D) AB=BA=IA B=B A=IAB=BA=I