Express the following as the sum of a symmetric and skew symmetric matrix:
(i) (315−1)
(ii) 6−22−23−12−13
(iii) 3−2−43−2−5−112
(iv) (1−152)
Solution:
(i) Let A=(315−1)
Hence,
A′=(351−1)
Now,
(A+A′)=(315−1)+(351−1)=(666−2)
Let
P=21(A+A′)=21(666−2)=(333−1)
Now,
P′=(333−1)=P
Thus, P=21(A+A′) is a symmetric matrix.
Now,
(A−A′)=(315−1)−(351−1)=(0−440)
Let
Q=21(A−A′)=21(0−440)=(0−220)
Now,
Q′=(02−20)=−Q
Thus, Q=21(A−A′) is a skew symmetric matrix.
Representing A as the sum of P and Q :
P+Q=(333−1)+(0−220)=(315−1)=A
(ii) Let
A=6−22−23−12−13
Hence,
A′=6−22−23−12−13
Now,
(A+A′)=6−22−23−12−13+6−22−23−12−13=12−44−46−24−26
Let
P=21(A+A′)=2112−44−46−24−26=6−22−23−12−13
Now,
P′=6−22−23−12−13=P
Thus, P=21(A+A′) is a symmetric matrix.
Now,
(A−A′)=6−22−23−12−13−6−22−23−12−13=000000000
Let
Q=21(A−A′)=21000000000=000000000
Now,
Q′=000000000=−Q
Thus, Q=21(A−A′) is a skew symmetric matrix.
Representing A as the sum of P and Q :
(iii) Let
A=3−2−43−2−5−112
Hence,
A′=33−1−2−21−4−52
Now,
(A+A′)=3−2−43−2−5−112+33−1−2−21−4−52=61−51−4−4−5−44
Let
P=21(A+A′)=2161−51−4−4−5−44=3212−521−2−22−5−22
Now,
P′=3212−521−2−22−5−22=P
Thus, P=21(A+A′) is a symmetric matrix.
Now,
(A−A′)=3−2−43−2−5−112−33−1−2−21−4−52=0−5−350−6360
Let
Q=21(A−A′)=210−5−350−6360=02−52−3250−32330
Now,
Q′=025232−5032−3−30=−Q
Thus, Q=21(A−A′) is a skew symmetric matrix.
Representing A as the sum of P and Q :
P+Q=3212−521−2−22−5−22+02−52−3250−32330=3−2−43−2−5−112=A
(iv) Let A=(1−152)
Hence,
A′=(15−12)
Now,
(A+A′)=(1−152)+(15−12)=(2444)
Let
P=21(A+A′)=21(2444)=(1222)
Now,
P′=(1222)=P
Thus, P=21(A+A′) is a symmetric matrix.
Now,
(A−A′)=(1−152)−(15−12)=(0−660)
Let
Q=21(A−A′)=21(0−660)=(0−330)
Now,
Q′=(03−30)=−Q
Thus, Q=21(A−A′) is a skew symmetric matrix.
Representing A as the sum of P and Q :
P+Q=(1222)+(0−330)=(1−152)=A