Let A=[2432],B=[13−25],C=[−2534]A=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right], B=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right], C=\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]A=[2342],B=[1−235],C=[−2354]. Find each of the following:
(i) A+BA+BA+B
(ii) A−B\quad A-BA−B
(iii) 3A−C3 A-C3A−C
(iv) ABA BAB
(v) BAB ABA
Compute the following:
(i) (ab−ba)+(abba)\quad\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)+\left(\begin{array}{ll}a & b \\ b & a\end{array}\right)(a−bba)+(abba)
(ii) (a2+b2b2+c2a2+c2a2+b2)+(2ab2bc−2ac−2ab)\left(\begin{array}{ll}a^{2}+b^{2} & b^{2}+c^{2} \\ a^{2}+c^{2} & a^{2}+b^{2}\end{array}\right)+\left(\begin{array}{cc}2 a b & 2 b c \\ -2 a c & -2 a b\end{array}\right)(a2+b2a2+c2b2+c2a2+b2)+(2ab−2ac2bc−2ab)
(iii) (−14−68516285)+(1276805324)\quad\left(\begin{array}{ccc}-1 & 4 & -6 \\ 8 & 5 & 16 \\ 2 & 8 & 5\end{array}\right)+\left(\begin{array}{ccc}12 & 7 & 6 \\ 8 & 0 & 5 \\ 3 & 2 & 4\end{array}\right)−182458−6165+1283702654
(iv) (cos2xsin2xsin2xcos2x)+(sin2xcos2xcos2xsin2x)\left(\begin{array}{ll}\cos ^{2} x & \sin ^{2} x \\ \sin ^{2} x & \cos ^{2} x\end{array}\right)+\left(\begin{array}{ll}\sin ^{2} x & \cos ^{2} x \\ \cos ^{2} x & \sin ^{2} x\end{array}\right)(cos2xsin2xsin2xcos2x)+(sin2xcos2xcos2xsin2x)
Compute the indicated products:
(i) (ab−ba)(a−bba)\quad\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)(a−bba)(ab−ba)
(ii) (123)(234)\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\left(\begin{array}{lll}2 & 3 & 4\end{array}\right)123(234)
(iii) (1−223)(123231)\quad\left(\begin{array}{cc}1 & -2 \\ 2 & 3\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)(12−23)(122331)
(iv) (234345456)(1−35024305)\left(\begin{array}{lll}2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6\end{array}\right)\left(\begin{array}{ccc}1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5\end{array}\right)234345456103−320545
(v) (2132−11)(101−121)\quad\left(\begin{array}{cc}2 & 1 \\ 3 & 2 \\ -1 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 1 \\ -1 & 2 & 1\end{array}\right)23−1121(1−10211)
(vi) (31)\quad\left(\begin{array}{ll}3 & 1\end{array}\right)(31)
Solution:
(i) (ab−ba)(a−bba)\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)(a−bba)(ab−ba)
(iii) (1−223)(123231)\left(\begin{array}{cc}1 & -2 \\ 2 & 3\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)(12−23)(122331)
(v) (2132−11)(101−121)\left(\begin{array}{cc}2 & 1 \\ 3 & 2 \\ -1 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 1 \\ -1 & 2 & 1\end{array}\right)23−1121(1−10211)
(vi)
If A=(12−35021−11),B=(3−12425203),C=(4120321−23)A=\left(\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right), B=\left(\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right), C=\left(\begin{array}{ccc}4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3\end{array}\right)A=15120−1−321,B=342−120253,C=40113−2223, then compute (A+B)(A+B)(A+B) and (B−C)(B-C)(B−C). Also, verify that A+(B−C)=(A+B)−CA+(B-C)=(A+B)-CA+(B−C)=(A+B)−C.
Now,
Hence, A+(B−C)=(A+B)−CA+(B-C)=(A+B)-CA+(B−C)=(A+B)−C.
A=(2315313234373223)A=\left(\begin{array}{ccc}\frac{2}{3} & 1 & \frac{5}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3}\end{array}\right)A=3231371322353432 and B=(25351152545756525)B=\left(\begin{array}{ccc}\frac{2}{5} & \frac{3}{5} & 1 \\ \frac{1}{5} & \frac{2}{5} & \frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5}\end{array}\right)B=52515753525615452, then compute 3A−5B3 A-5 B3A−5B.
Simplify cosθ(cosθsinθ−sinθcosθ)+sinθ(sinθ−cosθcosθsinθ)\cos \theta\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)+\sin \theta\left(\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right)cosθ(cosθ−sinθsinθcosθ)+sinθ(sinθcosθ−cosθsinθ).
Find XXX and YYY, if
(i) X+Y=(7025)\quad X+Y=\left(\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right)X+Y=(7205) and X−Y=(3003)X-Y=\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)X−Y=(3003)
(ii) 2X+3Y=(2340)\quad 2 X+3 Y=\left(\begin{array}{ll}2 & 3 \\ 4 & 0\end{array}\right)2X+3Y=(2430) and 3X+2Y=(2−2−15)3 X+2 Y=\left(\begin{array}{cc}2 & -2 \\ -1 & 5\end{array}\right)3X+2Y=(2−1−25)
(i) X+Y=(7025)\quad X+Y=\left(\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right)X+Y=(7205)
Adding equations (1) and (2),
(ii) 2X+3Y=(2340)\quad 2 X+3 Y=\left(\begin{array}{ll}2 & 3 \\ 4 & 0\end{array}\right)2X+3Y=(2430)
Multiplying equation ( 1 ) by 2,
Multiplying equation (2) by 3,
From (3) and (4),
Now
Find XXX, if Y=(3214)Y=\left(\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right)Y=(3124) and 2X+Y=(10−32)2 X+Y=\left(\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right)2X+Y=(1−302).
Find xxx and yyy, if 2(130x)+(y012)=(5618){ }^{2}\left(\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right)+\left(\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right)=\left(\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right)2(103x)+(y102)=(5168).
⇒2(130x)+(y012)=(5618)\Rightarrow 2\left(\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right)+\left(\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right)=\left(\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right)⇒2(103x)+(y102)=(5168)
⇒(2602x)+(y012)=(5618)\Rightarrow\left(\begin{array}{cc}2 & 6 \\ 0 & 2 x\end{array}\right)+\left(\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right)=\left(\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right)⇒(2062x)+(y102)=(5168)
⇒(2+y612x+2)=(5618)\Rightarrow\left(\begin{array}{cc}2+y & 6 \\ 1 & 2 x+2\end{array}\right)=\left(\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right)⇒(2+y162x+2)=(5168)
Comparing the corresponding elements of these two matrices,
Therefore, x=3x=3x=3 and y=3y=3y=3.
Solve the equation for x,y,zx, y, zx,y,z and ttt if 2(xzyt)+3(1−102)=3(3546)2\left(\begin{array}{cc}x & z \\ y & t\end{array}\right)+3\left(\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right)=3\left(\begin{array}{cc}3 & 5 \\ 4 & 6\end{array}\right)2(xyzt)+3(10−12)=3(3456).
⇒2(xzyt)+3(1−102)=3(3546)\Rightarrow 2\left(\begin{array}{ll}x & z \\ y & t\end{array}\right)+3\left(\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right)=3\left(\begin{array}{ll}3 & 5 \\ 4 & 6\end{array}\right)⇒2(xyzt)+3(10−12)=3(3456)
⇒(2x2z2y2t)+(3−306)=(9151218)\Rightarrow\left(\begin{array}{ll}2 x & 2 z \\ 2 y & 2 t\end{array}\right)+\left(\begin{array}{cc}3 & -3 \\ 0 & 6\end{array}\right)=\left(\begin{array}{cc}9 & 15 \\ 12 & 18\end{array}\right)⇒(2x2y2z2t)+(30−36)=(9121518)
⇒(2x+32z−32y2t+6)=(9151218)\Rightarrow\left(\begin{array}{cc}2 x+3 & 2 z-3 \\ 2 y & 2 t+6\end{array}\right)=\left(\begin{array}{cc}9 & 15 \\ 12 & 18\end{array}\right)⇒(2x+32y2z−32t+6)=(9121518)
Therefore, x=3,y=6,z=9x=3, y=6, z=9x=3,y=6,z=9 and t=6t=6t=6.
If x(23)+y(−11)=(105)x\binom{2}{3}+y\binom{-1}{1}=\binom{10}{5}x(32)+y(1−1)=(510), find values of xxx and yyy.
Given 3(xyzw)=(x6−12w)+(4x+yz+w3)3\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)=\left(\begin{array}{cc}x & 6 \\ -1 & 2 w\end{array}\right)+\left(\begin{array}{cc}4 & x+y \\ z+w & 3\end{array}\right)3(xzyw)=(x−162w)+(4z+wx+y3), find values of w,x,yw, x, yw,x,y and zzz.
F(x)=(cosx−sinx0sinxcosx0001), show that F(x)F(y)=F(x+y).\begin{aligned} F(x) & =\left(\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right) \text {, show that } F(x) F(y)=F(x+y) .\end{aligned}F(x)=cosxsinx0−sinxcosx0001, show that F(x)F(y)=F(x+y).
\section*{Show that}
(i) (5−167)(2134)≠(2134)(5−167)\quad\left(\begin{array}{cc}5 & -1 \\ 6 & 7\end{array}\right)\left(\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right) \neq\left(\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right)\left(\begin{array}{cc}5 & -1 \\ 6 & 7\end{array}\right)(56−17)(2314)=(2314)(56−17)
(ii) (123010110)(−1100−11234)≠(−1100−11234)(123010110)\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right)\left(\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4\end{array}\right) \neq\left(\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right)101211300−1021−13014=−1021−13014101211300
Find A2−5A+6IA^{2}-5 A+6 IA2−5A+6I, if A=(2012131−10)A=\left(\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right)A=22101−1130
Therefore,
If A=(102021203)A=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right)A=102020213, prove that A3−6A2+7A+2I=0A^{3}-6 A^{2}+7 A+2 I=0A3−6A2+7A+2I=0.
Hence, A3−6A2+7A+2I=0A^{3}-6 A^{2}+7 A+2 I=0A3−6A2+7A+2I=0.
If A=(3−24−2)A=\left(\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right)A=(34−2−2) and I=(1001)I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)I=(1001), find kkk so that A2=kA−2IA^{2}=k A-2 IA2=kA−2I.
Comparing the corresponding elements, we have:
Therefore, the value of k=1k=1k=1.
If A=(0−tanα2tanα20)A=\left(\begin{array}{cc}0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0\end{array}\right)A=(0tan2α−tan2α0) and III is the identity matrix of order 2, show that I+A=(I−A)(cosα−sinαsinαcosα)I+A=(I-A)\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)I+A=(I−A)(cosαsinα−sinαcosα)
A trust fund has ₹ 30000 that must be invested in two different types of bonds. The first bond pays 5%5 \%5% interest per year, and the second bond pays 7%7 \%7% interest per year. Using matrix multiplication, determine how to divide ₹ 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of:
(i) ₹ 1800
(ii) ₹ 2000
The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are ₹ 80 , ₹ 60 and ₹ 40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.
Assume X,Y,Z,WX, Y, Z, WX,Y,Z,W and PPP are matrices of order 2×n,3×k,2×p,n×32 \times n, 3 \times k, 2 \times p, n \times 32×n,3×k,2×p,n×3 and p×kp \times kp×k respectively. The restriction on n,kn, kn,k and ppp so that PY+WYP Y+W YPY+WY will be defined are:
(A) k=3,p=nk=3, p=nk=3,p=n
(B) kkk is arbitrary, p=2p=2p=2
(C) ppp is arbitrary, k=3k=3k=3
(D) k=2,p=3k=2, p=3k=2,p=3
Assume X,Y,Z,WX, Y, Z, WX,Y,Z,W and PPP are matrices of order 2×n,3×k,2×p,n×32 \times n, 3 \times k, 2 \times p, n \times 32×n,3×k,2×p,n×3 and p×kp \times kp×k respectively. If n=pn=pn=p, then the order of the matrix 7X−5Z7 X-5 Z7X−5Z is:
(A) p×2p \times 2p×2
(B) 2×n2 \times n2×n
(C) n×3n \times 3n×3
(D) p×np \times np×n