A=[aij]m×nA=\left[a_{i j}\right]_{m \times n}A=[aij]m×n is a square matrix, if
(A) m<nm<nm<n
(B) m>nm>nm>n
(C) m=nm=nm=n
(D) None of these
Question 1: In the matrix A=(2519−735−2521231−517)\begin{aligned} & \text { Question 1: } \\ & \text { In the matrix }\end{aligned} A=\left(\begin{array}{cccc}2 & 5 & 19 & -7 \\ 35 & -2 & \frac{5}{2} & 12 \\ \sqrt{3} & 1 & -5 & 17\end{array}\right) Question 1: In the matrix A=23535−211925−5−71217, write:
(i) The order of the matrix
(ii) The number of elements
(iii) Write the elements a13,a21,a33,a24,a23a_{13}, a_{21}, a_{33}, a_{24}, a_{23}a13,a21,a33,a24,a23
If a matrix has 24 elements, what are the possible order it can have? What, if it has 13 elements?
If a matrix has 18 elements, what are the possible order it can have? What, if it has 5 elements?
Construct a 2×22 \times 22×2 matrix, A=[aij]A=\left[a_{i j}\right]A=[aij], whose elements are given by:
(i) aij=(i+j)22a_{i j}=\frac{(i+j)^{2}}{2}aij=2(i+j)2
(ii) aij=ija_{i j}=\frac{i}{j}aij=ji
(iii) aij=(i+2j)22a_{i j}=\frac{(i+2 j)^{2}}{2}aij=2(i+2j)2
In general, a 3×43 \times 43×4 matrix whose elements are given by
(i) aij=12∣−3i+j∣\quad a_{i j}=\frac{1}{2}|-3 i+j|aij=21∣−3i+j∣
(ii) aij=2i−ja_{i j}=2 i-jaij=2i−j
Find the value of x,yx, yx,y and zzz from the following equation:
(i) (43x5)=(yz15)\quad\left(\begin{array}{ll}4 & 3 \\ x & 5\end{array}\right)=\left(\begin{array}{ll}y & z \\ 1 & 5\end{array}\right)(4x35)=(y1z5)
(ii) (x+y25+zxy)=(6258)\quad\left(\begin{array}{cc}x+y & 2 \\ 5+z & x y\end{array}\right)=\left(\begin{array}{ll}6 & 2 \\ 5 & 8\end{array}\right)(x+y5+z2xy)=(6528)
(iii) (x+y+zx+zy+z)=(957)\left(\begin{array}{c}x+y+z \\ x+z \\ y+z\end{array}\right)=\left(\begin{array}{l}9 \\ 5 \\ 7\end{array}\right)x+y+zx+zy+z=957
Find the value of a,b,ca, b, ca,b,c and ddd from the equation:
(a−b2a+c2a−b3c+d)=(−15013)\left(\begin{array}{cc}a-b & 2 a+c \\ 2 a-b & 3 c+d\end{array}\right)=\left(\begin{array}{cc}-1 & 5 \\ 0 & 13\end{array}\right)(a−b2a−b2a+c3c+d)=(−10513)
Which of the given values of xxx and yyy make the following pair of matrices equal
⌈3x+75y+12−3x⌉,⌈0y−284⌉\left\lceil\begin{array}{cc}3 x+7 & 5 \\ y+1 & 2-3 x\end{array}\right\rceil,\left\lceil\begin{array}{cc}0 & y-2 \\ 8 & 4\end{array}\right\rceil⌈3x+7y+152−3x⌉,⌈08y−24⌉
(A) x=−13,y=7x=\frac{-1}{3}, y=7x=3−1,y=7
(B) Not possible to find
(C) y=7,x=−23y=7, x=\frac{-2}{3}y=7,x=3−2
(D) x=−13,y=−23x=\frac{-1}{3}, y=\frac{-2}{3}x=3−1,y=3−2
The number of all possible matrices of order 3×33 \times 33×3 with each entry 0 or 1 is:
(A) 27
(B) 18
(C) 81
(D) 512