Find the value of cos−1(cos13π6)\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)cos−1(cos613π).
Find the value of tan−1(tan7π6)\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)tan−1(tan67π).
Prove that 2sin−135=tan−12472 \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{24}{7}2sin−153=tan−1724.
Prove that sin−1817+sin−135=tan−17736\sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{77}{36}sin−1178+sin−153=tan−13677.
Prove that cos−145+cos−11213=cos−13365\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}=\cos ^{-1} \frac{33}{65}cos−154+cos−11312=cos−16533.
Prove that cos−11213+sin−135=sin−15665\cos ^{-1} \frac{12}{13}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{56}{65}cos−11312+sin−153=sin−16556.
Prove that tan−16316=sin−1513+cos−135\tan ^{-1} \frac{63}{16}=\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5}tan−11663=sin−1135+cos−153.
Prove that tan−115+tan−117+tan−113+tan−118=π4\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{8}=\frac{\pi}{4}tan−151+tan−171+tan−131+tan−181=4π
Prove that tan−1x=12cos−1(1−x1+x),x∈[0,1]\tan ^{-1} \sqrt{x}=\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right), x \in[0,1]tan−1x=21cos−1(1+x1−x),x∈[0,1].
Prove that cot−1(1+sinx+1−sinx1+sinx−1−sinx)=x2,x∈(0,π4)\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)=\frac{x}{2}, x \in\left(0, \frac{\pi}{4}\right)cot−1(1+sinx−1−sinx1+sinx+1−sinx)=2x,x∈(0,4π).
Prove that tan−1(1+x−1−x1+x+1−x)=π2−12cos−1x,−12≤x≤1\tan ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)=\frac{\pi}{2}-\frac{1}{2} \cos ^{-1} x,-\frac{1}{\sqrt{2}} \leq x \leq 1tan−1(1+x+1−x1+x−1−x)=2π−21cos−1x,−21≤x≤1
Prove that 9π8−94sin−113=94sin−1223\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}=\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}89π−49sin−131=49sin−1322
Solve 2tan−1(cosx)=tan−1(2cosecx)2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)2tan−1(cosx)=tan−1(2cosecx).
Solve tan−11−x1+x=12tan−1x,(x>0)\tan ^{-1} \frac{1-x}{1+x}=\frac{1}{2} \tan ^{-1} x,(x>0)tan−11+x1−x=21tan−1x,(x>0)
Solve sin(tan−1x),∣x∣<1\sin \left(\tan ^{-1} x\right),|x|<1sin(tan−1x),∣x∣<1 is equal to
(A) x1−x2\frac{x}{\sqrt{1-x^{2}}}1−x2x
(B) 11−x2\frac{1}{\sqrt{1-x^{2}}}1−x21
(C) 11+x2\frac{1}{\sqrt{1+x^{2}}}1+x21
(D) x1+x2\frac{x}{\sqrt{1+x^{2}}}1+x2x
Solve: sin−1(1−x)−2sin−1x=π2\sin ^{-1}(1-x)-2 \sin ^{-1} x=\frac{\pi}{2}sin−1(1−x)−2sin−1x=2π, then xxx is equal to
(A) 0,120, \frac{1}{2}0,21
(B) 1,121, \frac{1}{2}1,21
(C) 0
(D) 12\frac{1}{2}21
Solve tan−1(xy)−tan−1x−yx+y\tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1} \frac{x-y}{x+y}tan−1(yx)−tan−1x+yx−y is equal to
(A) π2\frac{\pi}{2}2π
(B) π3\frac{\pi}{3}3π
(C) π4\frac{\pi}{4}4π
(D) −3π4\frac{-3 \pi}{4}4−3π