Prove 3sin−1x=sin−1(3x−4x3),x∈[−12,12]3 \sin ^{-1} x=\sin ^{-1}\left(3 x-4 x^{3}\right), x \in\left[-\frac{1}{2}, \frac{1}{2}\right]3sin−1x=sin−1(3x−4x3),x∈[−21,21].
Prove 3cos−1x=cos−1(4x3−3x),x∈[12,1]3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in\left[\frac{1}{2}, 1\right]3cos−1x=cos−1(4x3−3x),x∈[21,1].
Prove tan−1211+tan−1724=tan−112\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}=\tan ^{-1} \frac{1}{2}tan−1112+tan−1247=tan−121.
Prove 2tan−112+tan−117=tan−131172 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17}2tan−121+tan−171=tan−11731.
Write the function in the simplest form: tan−11+x2−1x,x≠0\tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}, x \neq 0tan−1x1+x2−1,x=0
Write the function in the simplest form: tan−11x2−1,∣x∣>1\tan ^{-1} \frac{1}{\sqrt{x^{2}-1}},|x|>1tan−1x2−11,∣x∣>1
Write the function in the simplest form: tan−1(1−cosx1+cosx),0<x<π\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), 0<x<\pitan−1(1+cosx1−cosx),0<x<π
Write the function in the simplest form: tan−1(cosx−sinxcosx+sinx),0<x<π\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right), 0<x<\pitan−1(cosx+sinxcosx−sinx),0<x<π
Write the function in the simplest form: tan−1xa2−x2,∣x∣<a\tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}},|x|<atan−1a2−x2x,∣x∣<a
Write the function in the simplest form: tan−1(3a2x−x3a3−3ax2),a>0;−a3≤x≤a3\tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right), a>0 ; \frac{-a}{\sqrt{3}} \leq x \leq \frac{a}{\sqrt{3}}tan−1(a3−3ax23a2x−x3),a>0;3−a≤x≤3a
Write the function in the simplest form: tan−1[2cos(2sin−112)]\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]tan−1[2cos(2sin−121)]
Find the value of cot(tan−1a+cot−1a)\cot \left(\tan ^{-1} a+\cot ^{-1} a\right)cot(tan−1a+cot−1a)
Find the value of tan12(sin−12x1+x2+cos−11−y21+y2),∣x∣<1,y>0\tan \frac{1}{2}\left(\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right),|x|<1, y>0tan21(sin−11+x22x+cos−11+y21−y2),∣x∣<1,y>0 and xy<1x y<1xy<1.
If sin(sin−115+cos−1x)=1\sin \left(\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1sin(sin−151+cos−1x)=1, find the value of xxx.
If tan−1x−1x−2+tan−1x+1x+2=π4\tan ^{-1} \frac{x-1}{x-2}+\tan ^{-1} \frac{x+1}{x+2}=\frac{\pi}{4}tan−1x−2x−1+tan−1x+2x+1=4π, find the value of xxx.
Find the value of sin−1(sin2π3)\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)sin−1(sin32π).
Find the value of tan−1(tan3π4)\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)tan−1(tan43π).
Find the value of tan(sin−135+cot−132)\tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)tan(sin−153+cot−123).
cos−1(cos7π6)\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)cos−1(cos67π) is equal to
(A) 7π6\frac{7 \pi}{6}67π
(B) 5π6\frac{5 \pi}{6}65π
(C) π3\frac{\pi}{3}3π
(D) π6\frac{\pi}{6}6π
sin(π3−sin−1(−12))\sin \left(\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right)sin(3π−sin−1(−21)) is equal to
(A) 12\frac{1}{2}21
(B) 13\frac{1}{3}31
(C) 14\frac{1}{4}41
(D) 1
Find the values of tan−13−cot−1(−3)\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})tan−13−cot−1(−3) is equal to
(A) π\piπ
(B) −π2-\frac{\pi}{2}−2π
(C) 0
(D) 232 \sqrt{3}23