Consider a binary operation * on the set {1,2,3,4,5} given by the following multiplication table.
i. Compute (2∗3)∗4 and 2∗(3∗4)
ii. Is *commutative?
iii. Compute (2∗3)∗(4∗5).
(Hint: Use the following table)
\begin{tabular}{|l|l|l|l|l|l|}
\hline∗ & 1 & 2 & 3 & 4 & 5 \
\hline 1 & 1 & 1 & 1 & 1 & 1 \
\hline 2 & 1 & 2 & 1 & 2 & 1 \
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline 3 & 1 & 1 & 3 & 1 & 1 \
\hline 4 & 1 & 2 & 1 & 4 & 1 \
\hline 5 & 1 & 1 & 1 & 1 & 5 \
\hline
\end{tabular}