Let f:{1,3,4}→{1,2,5}f:\{1,3,4\} \rightarrow\{1,2,5\}f:{1,3,4}→{1,2,5} and g:{1,2,5}→{1,3}g:\{1,2,5\} \rightarrow\{1,3\}g:{1,2,5}→{1,3} be given by f={(1,2),(3,5),(4,1)}f=\{(1,2),(3,5),(4,1)\}f={(1,2),(3,5),(4,1)} and g={(1,3),(2,3),(5,1)}g=\{(1,3),(2,3),(5,1)\}g={(1,3),(2,3),(5,1)}. Write down gofg o fgof.
Let f,g,hf, g, hf,g,h be functions from RRR to RRR. Show that
(f+g)oh=foh+goh(f+g) o h=f o h+g o h(f+g)oh=foh+goh
(f.g)oh=(foh).(goh)(f . g) o h=(f o h) .(g o h)(f.g)oh=(foh).(goh)
Find gofg o fgof and fogf o gfog, if
i. f(x)=∣x∣\quad f(x)=|x|f(x)=∣x∣ and g(x)=∣5x−2∣g(x)=|5 x-2|g(x)=∣5x−2∣
ii. f(x)=8x3f(x)=8 x^{3}f(x)=8x3 and g(x)=x13g(x)=x^{\frac{1}{3}}g(x)=x31
If f(x)=(4x+3)(6x−4),x≠23f(x)=\frac{(4 x+3)}{(6 x-4)}, x \neq \frac{2}{3}f(x)=(6x−4)(4x+3),x=32, show that fof(x)=xf o f(x)=xfof(x)=x, for all x≠23x \neq \frac{2}{3}x=32. What is the reverse of fff ?
State with reason whether the following functions have inverse.
i. f:{1,2,3,4}→{10}with f={(1,10),(2,10),(3,10),(4,10)}\quad f:\{1,2,3,4\} \rightarrow\{10\}_{\text {with }} f=\{(1,10),(2,10),(3,10),(4,10)\}f:{1,2,3,4}→{10}with f={(1,10),(2,10),(3,10),(4,10)}
ii. g:{5,6,7,8}→{1,2,3,4}g:\{5,6,7,8\} \rightarrow\{1,2,3,4\}g:{5,6,7,8}→{1,2,3,4} with g={(5,4),(6,3),(7,4),(8,2)}g=\{(5,4),(6,3),(7,4),(8,2)\}g={(5,4),(6,3),(7,4),(8,2)}
iii. h:{2,3,4,5}→{7,9,11,13}\quad h:\{2,3,4,5\} \rightarrow\{7,9,11,13\}h:{2,3,4,5}→{7,9,11,13} with h={(2,7),(3,9),(4,11),(5,13)}h=\{(2,7),(3,9),(4,11),(5,13)\}h={(2,7),(3,9),(4,11),(5,13)}
Show that f:[−1,1]→Rf:[-1,1] \rightarrow Rf:[−1,1]→R, given by f(x)=x(x+2)f(x)=\frac{x}{(x+2)}f(x)=(x+2)x is one-one. Find the inverse of the function f:[−1,1]→f:[-1,1] \rightarrowf:[−1,1]→ Range fff.
(Hint: For y∈y \iny∈ Range f,y=f(x)=xx+2f, y=f(x)=\frac{x}{x+2}f,y=f(x)=x+2x, for some xxx in [−1,1],i,e.,x=2y(1−y)[-1,1], \mathrm{i}, \mathrm{e} ., \quad x=\frac{2 y}{(1-y)}[−1,1],i,e.,x=(1−y)2y
Consider f:R→Rf: R \rightarrow Rf:R→R given by f(x)=4x+3f(x)=4 x+3f(x)=4x+3. Show that fff is invertible. Find the inverse of fff.
Consider f:R+→[4,∞)f: R_{+} \rightarrow[4, \infty)f:R+→[4,∞) given by f(x)=x2+4f(x)=x^{2}+4f(x)=x2+4. Show that fff is invertible with inverse f−1f^{-1}f−1 of given fff by f−1(y)=y−4f^{-1}(y)=\sqrt{y-4}f−1(y)=y−4, where R+R_{+}R+is the set of all non-negative real numbers.
Consider f:R+→[−5,∞)f: R_{+} \rightarrow[-5, \infty)f:R+→[−5,∞) given by f(x)=9x2+6x−5f(x)=9 x^{2}+6 x-5f(x)=9x2+6x−5. Show that fff is invertible with f−1(y)=((y+6)−13)f^{-1}(y)=\left(\frac{(\sqrt{y+6})-1}{3}\right)f−1(y)=(3(y+6)−1).
Let f:X→Yf: X \rightarrow Yf:X→Y be an invertible function. Show that fff has unique inverse.
(Hint: suppose g1g_{1}g1 and g2g_{2}g2 are two inverses of fff. Then for all y∈Yy \in Yy∈Y, fog1(y)=IY(y)=fog2(y)f o g_{1}(y)=\mathrm{I}_{Y}(y)=f o g_{2}(y)fog1(y)=IY(y)=fog2(y) . Use one-one ness of fff.
Consider f:{1,2,3}→{a,b,c}f:\{1,2,3\} \rightarrow\{a, b, c\}f:{1,2,3}→{a,b,c} given by f(1)=a,f(2)=b,f(3)=cf(1)=a, f(2)=b, f(3)=cf(1)=a,f(2)=b,f(3)=c. Find (f−1)−1=f\left(f^{-1}\right)^{-1}=f(f−1)−1=f.
Let f:X→Yf: X \rightarrow Yf:X→Y be an invertible function. Show that the inverse of f−1f^{-1}f−1 is fff i.e., (f−1)−1=f\left(f^{-1}\right)^{-1}=f(f−1)−1=f.
If f:R→Rf: R \rightarrow Rf:R→R is given by f(x)=(3−x3)13f(x)=\left(3-x^{3}\right)^{\frac{1}{3}}f(x)=(3−x3)31, then f∘f(x)f \circ f(x)f∘f(x) is:
A. 1x3\frac{1}{x^{3}}x31
B. x3x^{3}x3
C. xxx
D. (3−x3)\left(3-x^{3}\right)(3−x3)
If f:R−{−43}→Rf: R-\left\{-\frac{4}{3}\right\} \rightarrow Rf:R−{−34}→R be a function defined as f(x)=4x3x+4f(x)=\frac{4 x}{3 x+4}f(x)=3x+44x. The inverse of fff is the map g:g:g: Range f→R−{−43}f \rightarrow R-\left\{-\frac{4}{3}\right\}f→R−{−34} given by :
A. g(y)=3y3−4yg(y)=\frac{3 y}{3-4 y}g(y)=3−4y3y
B. g(y)=4y4−3yg(y)=\frac{4 y}{4-3 y}g(y)=4−3y4y
C. g(y)=4y3−4yg(y)=\frac{4 y}{3-4 y}g(y)=3−4y4y
D. g(y)=3y4−3yg(y)=\frac{3 y}{4-3 y}g(y)=4−3y3y